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ABSTRACT

In this paper, we present a comparison of target detection
performance for normalized adaptive matched filter (NAMF),
normalized parametric adaptive matched filter (NPAMF),
and normalized low-rank adaptive matched filter (LRNAMF)
for space-time adaptive processing. Test statistics for these
algorithms as functions of range bins and filter outputs as
functions of Doppler beam position (DBP ) and azimuth
angle (AZ) are computed for the KASSPER L-band dat-
acube, which is simulated for the airborne linear phased
array radar application. First, we illustrate that when the
signal-to-noise ratio is used as a target-detection parame-
ter, LRNAMF outperforms NAMF and NPAMF under weak
conditions of training data contamination. Next, we demon-
strate the target cancellation effect when the training data
are contaminated by competing targets (outliers). Finally,
we present a scenario for target detection in heterogenous
radar clutter when there is spatio-temporal steering vector
uncertainty. In this scenario, we show that there is substan-
tial broadening in the filter outputs as functions of DBP
and AZ for these algorithms.

1. INTRODUCTION

Space-time adaptive processing (STAP) [1-5] exhibits po-
tential benefit for target detection in airborne and space-
based radars. In practice, STAP is plagued by system er-
rors, internal clutter motion, and shadowing effects as well
as non-stationary clutter scenarios. Important STAP issues
include the computational cost, sample support, constant
false alarm rate (CFAR), and robustness to mismatch (e.g.,
misalignment of the steering vector for the desired target
and the range-dependent covariance matrix). According to
the “Reed-Mallet-Brennan rule” [6], K = 2JN training
data vectors, (J is the number of elements in the linear
phased array and N the number of pulses per element),
are needed for the computation of covariance matrix and
weight vector so that the signal-to-interference-and-noise
ratio (SINR) is within 3dB of the optimum. When the
problem of dimensionality (or the spatio-temporal product,
JN ) increases, the required training support, K, increases
significantly. This imposes onerous requirements on train-

ing data collection in practice. Additionally, the computa-
tional cost grows exponentially when JN increases. More-
over, since only one realization of spatio-temporal datacube
is available in practice, training data need to be selected
from other range bins adjacent to a test range bin, namely,
a cell under test, (CUT). Over the entire radar range if the
data is homogeneous, it ensures that the selected training
data is representative of clutter for a CUT. However, hetero-
geneous clutter results in large variations over range. This
spatial clutter variation imposes severe restrictions on the
size of available training data. Therefore, it is a challenging
research topic to devise adaptive space-time processors for
target detection in heterogeneous radar clutter.

In the past, many reduced-dimension processing algo-
rithms (e.g., selected references including [7, 8, 9, 5]) have
been developed to address the problem of limited training
data and to reduce the computational complexity. As men-
tioned by Rangaswamy [10] (and cited references therein),
in many cases, the interference covariance matrix may be
approximated by its low rank version. The probability of
false alarm rate (Pfa) and the probability of detection (Pd)
for the normalized low-rank matched filter (LRNMF) have
been derived by Rangaswamy [10]. This work illustrates
that the reduced-dimension processing produces a test statis-
tic with robust performance with respect to unknown clut-
ter scaling and unknown background noise level. For radar
target detection in heterogeneous clutter, Monte Carlo sim-
ulations [11] have also been conducted to demonstrate that
not only LRNAMF reduces the computational complexity
of fully adaptive STAP but also provides a way to deter-
mine the correct clutter rank through the Pd performance.
In this paper, we study the target detection performance of
LRNAMF and compare it with two other methods, i.e., nor-
malized adaptive matched filter (NAMF) [12] and normal-
ized parametric adaptive matched filter (NPAMF) [13]. Per-
formance analysis is carried out by Monte Carlo simulation.
It is illustrated that LRNAMF can outperform NAMF and
NPAMF when there are few outliers in the training data.

In Section 2, cutoff signal-to-noise ratios as functions of
the sample support for NAMF, NPAMF, and LNRAMF are
presented. On the other hand, performance comparisons for
NAMF, NPAMF, and LRNAMF are shown in the later sec-
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tion, where we present two sets of simulations to illustrate
the steering-vector matched and mismatched cases as well
as the target cancellation effect. In Case 1 of Section 3, sim-
ulations are performed for the case that we have the a priori
information regarding true steering vector. Broadenings of
filter output due to the steering-vector uncertainty is demon-
strated in Case 2 of Section 3. Conclusions are presented in
Section 4.

2. CUTOFF SIGNAL-TO-NOISE RATIOS

For STAP, each of J array elements of the side-looking lin-
ear phased array radar transmits and receives N pulses in a
coherent processing interval (CPI). The measured JN × 1
spatio-temporal data vector, x, has the concatenated repre-
sentation, x = [xT(0)xT(1) . . . xT(N − 1)]T where x(n) is
a complex row vector with J elements. In the binary detec-
tion problem, two hypotheses are defined as

H0 : x(n) = d(n) (1)

H1 : x(n) = ae(n) + d(n) (2)

where n = 0, 1, ..., N − 1. Under the hypothesis H0, the
data vector x contains only the unwanted disturbance d with
a positive definite covariance matrix Rd of dimension JN×
JN , while under the hypothesis H1, x may contain the de-
sired target with known target steering vector e(n) but un-
known complex amplitude a. The disturbance d may con-
sist of the Gaussian clutter vector having a covariance ma-
trix qRc with known structure and unknown power level q
and the additive white Gaussian noise having the covariance
matrix σ2I, where I is JN × JN identity matrix and σ2 is
the unknown noise power. In this case, the disturbance co-
variance matrix Rd is given by Rd = qRc + σ2I. For the
binary detection problem, a scalar test statistic, Λ, is com-
puted from the array output sequence for each pulse in the
CPI and compared with a specified threshold, λ. Given a
single realization of x, the hypothesis H0 : a = 0 is se-
lected if Λ < λ while H1 : a �= 0 is declared if Λ > λ.
In adaptive signal processing, the disturbance covariance
matrix (Rd) needs to be computed from training data so
that test statistics for NAMF, NPAMF, and LNRAMF, i.e.,
ΛNAMF , ΛNP AMF , and ΛLNRAMF can be expressed as

ΛNAMF = |eH ˆR
−1

d x|2

[eH ˆR
−1

d e][xH ˆR
−1

d x]
(3)

ΛNP AMF =
|
∑N−P−1

n=0
sH(n)ν(n)|2

[
∑N−P−1

n=0
sH(n)s(n)][

∑N−P−1

n=0
νH(n)ν(n)]

(4)

ΛLRNAMF = |eH(I−ˆP)x|2
[eH(I−ˆP)e][xH(I−ˆP)x]

(5)

where R̂d is the estimated disturbance covariance matrix
and the spatio-temporal steering vector, e, is assumed to
be the same as the target steering vector. Note that in Eq.
(5), ΛLRNAMF is independent of the unknown noise power

σ2 and it allows two important interpretations as normal-
ized adaptive matched filtering in the sub-dominant distur-
bance subspace or a dominant mode rejector followed by
quadratic normalization. For NPAMF [9], ν and s, with the
reduced dimension of J(N − P ), are residual sequences
for the spatio-temporally whitened primary data and steer-
ing vector, respectively. For LRNAMF [11], I and P̂ are the
identity matrix and the estimated projection matrix, respec-
tively. P̂ has a rank r and is formed from the eigenvectors
corresponding to the r dominant eigenvalues of R̂d. For an
airborne linear phased array radar under ideal conditions the
Brennan rule [5] predicts the clutter rank as:

r = J + β(N − 1) (6)

β = 2vpT/d (7)

where β is the slope of the clutter ridge, vp the platform
velocity, T the pulse repetition interval, and d the inter-
element spacing. When β has a nominal value of unity, the
clutter rank r is much less than the spatio-temporal prod-
uct JN especially with increasing J and N . This ensures
the necessity for the application of low rank approximation
(5) in order to reduce the computational cost for large di-
mensional STAP problem and to preserve invariance with
respect to the unknown clutter power and noise level.

Adaptive signal processing requires training data for es-
timating the disturbance covariance matrix R̂d. It is known
that if there are outliers in training data, it will cause tar-
get cancellation so that it is unable to obtain a good esti-
mate of the threshold for further computation of test statis-
tics. Hence, we utilize those true clutter covariance matri-
ces for the simulated KASSPER L-band radar clutter [14]
to generate the datacube containing only radar return from
clutter. This set of clutter-only datacube will be used as
the training data to compute (R̂d) for NAMF, the projection
matrix (P̂) for LRNAMF [10], and the multichannel linear
autoregressive coefficients for NPAMF [9]. Parameters for
the simulated KASSPER L-band datacube are given in Ta-
ble 1. Note that the DBP is the normalized Doppler fre-
quency with respect to the pulse repetition frequency, T−1.
This clutter-only datacube contains 1000 range bins (RBs)
and each RB consists of data matrix simulated for the lin-
ear phased array with eleven channels (J = 11) and thirty-
two pulses (N = 32). In this case, the slope of the clutter
ridge β is about 0.9231 so that the Brennan’s rule yields
the clutter rank to be r = J + β(N − 1) ≈ 40. For the
ideal linear phased array radar, β = 1 so that r = 42.
Since the clutter rank for the KASSPER L-band clutter is
much smaller than the spatio-temporal product JN = 352,
the LRNAMF algorithm reduces the computational com-
plexity and results a better target detection performance for
STAP. The clutter-to-noise ratio (CNR) for the simulated
KASSPER L-band datacube is 40dB. The cutoff signal-to-
noise ratios (SNR) is defined as the minimum ratio of the
target to noise power so that multiple targets can be detected
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simultaneously with a specified, maximum threshold. For
this simulation, the cutoff SNR versus sample support K
for NAMF, NPAMF, and LRNAMF are plotted in Figure 1.
Under the sliding window processing (SWP), each half of
outlier-free training data with sample support K is selected
symmetrically from either side of the CUT. The primary
data is generated by manually inserting three targets into
the clutter-only datacube at RB = 493, 500, and 507, re-
spectively. These three targets have identical Doppler beam
position, DBPT = −0.2323, and azimuth angle, AZT =
149o, but with various SNRs. In order to expedite the com-
putation for ΛNAMF , ΛNP AMF , and ΛLRNAMF as functions
of RBs, SNRs, and sample support, a portion (J = 2,
N = 32, and RB = 1000) of the clutter-only datacube is
processed. However, the allowed CUTs are in the range of
(K/2) + 1 to 1000− (K/2). For Figure 1, We selected the
CUT to be from 475 to 525. The cutoff SNRs are then de-
termined at the condition when those three Λs at RB = 493,
500, and 507 are greater than the rest of Λs at other RBs.
In the simulation, the model order of the NPAMF is cho-
sen to be P = 4 and the clutter rank for the LRNAMF is
r = 42. For array elements J = 2, and pulses N = 32,
since the sample matrix inversion in the NAMF method be-
comes ill-conditioned when K ≤ 64, the cutoff SNRs for
NAMF are only available for K > 64, which is the curve
with ’+’ symbol in Figure 1. When the sample support is
in the range, K < 2JN = 128), the LRNAMF has smaller
cutoff SNR than the NAMF and NPAMF. In the range that
72 ≤ K ≤ 3JN = 192, the cutoff SNR for the NAMF is
always smaller than that of the NPAMF except at K = 128,
where these three algorithms have the same cutoff SNR.
When 128 ≤ K ≤ 192, the LRNAMF has the larger cut-
off SNRs than the NAMF and NPAMF but the difference
of all cutoff SNRs is less than 3dB. In the next section,
we will demonstrate that to provide a good detection per-
formance, the LRNAMF requires a small sample support,
KLRNAMF = 2r = 84 and has less computational com-
plexity than NAMF and NPAMF. Hence, this study illus-
trates that LRNAMF out-performs NPAMF and NAMF for
the KASSPER L-band datacube as long as there are few
outliers in the training data. Note that at small sample sup-
port, the cutoff SNR for the NPAMF and LRNAMF rise
rapidly as shown in Figure 1. This is attributed to the fact
that the sample support is too small to yield a good estimate
of the disturbance covariance matrices for LRNAMF or to
compute P th-order multichannel linear autoregressive co-
efficients for NPAMF) appropriately. Furthermore, at very
small sample support, i.e., K < 16, NPAMF requires the
cutoff SNR be greater than 0dB in order to be able to de-
tect these three targets simultaneously.

Parameter Value
Carrier frequency 1240 MHz
Bandwidth 10 MHz
Number of antenna elements (J) 11
Number of pulses (N ) 32
Pulse repetition frequency (T−1) 1984 Hz
interelement spacing (d) 0.1092 m
1000 range bins 35 km to 50 km
91 azimuth angles (AZ) 87o,89o,...267o

128 Doppler beam position (DBP ) -0.5 to 0.5
Clutter-to-noise ratio (CNR) 40dB
Platform speed 100 m/s

Table 1. KASSPER L-band datacube parameters

Fig. 1. Cutoff signal-to-noise ratio versus sample supports

3. TARGET CANCELLATION EFFECT AND
STEERING VECTOR MATCHED AND

MISMATCHED CASES

In this section, NAMF, NPAMF, and LRNAMF are applied
to compute test statistics versus range bins (RBs) and fil-
ter outputs versus azimuth angles (AZ) and Doppler beam
position (DBP ) for two situations when the steering vec-
tors for manually inserted targets are either known or un-
known. The outlier-free training data are selected from the
clutter-only datacube, which is generated from true clutter
covariance matrices for the KASSPER L-band radar clut-
ter. On the other hand, the outlier contaminated training
data are selected from the primary datacube, in which three
targets are manually inserted to the clutter-only datacube
at RB = 493, 500, and 507. In other words, these man-
ually inserted targets also serve as outliers in the outlier-
contaminated training data. All three inserted targets are
assumed to have identical DBP = −0.2323, AZ = 149o,
and SNR = 40dB. Other system parameters used for the
simulations in this section are fixed at J = 11 and N = 32
so that the spatio-temporal product, JN, is equal to 352.

The sample support K for each algorithm is also spec-
ified in each figure as well as the model order P for the
NPAMF and the clutter rank r for the LRNAMF. For most

0-7803-8882-8/05/$20.00 (C) 2005 IEEE



simulations, we select the following parameters, KNAMF =
704, KNPAMF = 16, KLRNAMF = 84, P = 4, and r =
42. Occasionally, we also highlight the value of KNPAMF

in the caption of the figure for the purpose of illustrating
the improved detection performance of the NPAMF when
KNPAMF is increased to 352. Again the sliding window
processing (SWP) are adopted for all simulations and the
training data are selected equally from both sides of the
CUT. To expedite the computation, the range of CUTs are
chosen from 485 to 515.

Case 1: Known Steering Vector

In this case, disturbance covariance matrices, R̂d, for all
CUTs are estimated for two possible situations: (1) training
data are outlier-free and (2) training data are contaminated
with outliers. The test statistics for the NAMF, NPAMF,
and LRNAMF, namely, ΛNAMF , ΛNP AMF , and ΛLNRAMF ,
are computed from Eqs. (3) to (5), in which the spatio-
temporal steering vector, e, is selected from all “look” steer-
ing vectors. The DBP s and AZs for “look” steering vec-
tors will be designated as DBPLs and AZLs. We select
128 DBPLs having the range from -0.5 to 0.5 and 91 AZLs
from 87o to 267o as shown in Table 1. To compute the test
statistics, three targets are manually inserted into the pri-
mary data, x, at RB = 493, 500, and 507 as well as at
DBPL = DBPT = −0.2323 and AZL = AZT = 149o.
Thus, the target steering vector will only match with one
of the “look” steering vectors. For the following simula-
tions, the SNR is fixed at 40dB. Then, we compute the test
statistics for the NAMF, NPAMF, and LRNAMF as given in
Eqs. (3) to (5) as functions of RBs, DBPLs, and AZLs.
The legend either “no” or “yes” in the following figures in-
dicates that the training data used for estimating the distur-
bance covariance matrices are either outlier-free or contam-
inated with outliers.

We illustrate the azimuth-angle mismatch in Figure 2
where DBPL = DBPT = −0.2323 and AZL = 147o <
AZT = 149o as well as the Doppler-beam-position mis-
match in Figure 3 where AZL = AZT = 149o but DBPL =
−0.2402 < DBPT = −0.2323. It indicates that when
the target steering vector is known, test statistics obtained
from simulations are very sensitive to the misalignment of
the “look” steering vector with respect to the target steer-
ing vector so that the target cannot be detected regardless
whether the training data contain outliers or not. Only when
the “look” steering vector matches perfectly with that of the
desired target, these three targets at RB = 493, 500, and
507 can be detected from the application of NAMF and LR-
NAMF algorithms as shown in Figure 4. Since sample sup-
port for the NAMF and LRNAMF, KNAMF = 704 = 2JN
and KLRNAMF = 84 = 2r, satisfy the RMB rule, both of
them have better performance than the NPAMF with small
sample support KNPAMF . This is because at small sample

Fig. 2. Angular mismatched case when AZL = 147o

Fig. 3. Doppler mismatched case at DBPL = −0.2402

support, KNPAMF = 16, and with the presence of outliers
in the training data, the computed P th-order multichannel
linear autoregressive coefficients are insufficient to whiten
the spatio-temporal data vector and subsequently lead to
worse detection performance for the NPAMF. In fact, from
other investigations, it also indicates that if KNAMF <
2JN and KLRNAMF < 2r, the detection performance of
both NAMF and LRNAMF is also deteriorated in the same
manner as that of the NPAMF.

After a series of computations by varying KNPAMF

from 8 to 704, we observed that the NPAMF with KNPAMF =
352 can yield equivalent performance to the NAMF and LR-
NAMF with KNAMF = 704 and KLRNAMF = 84, re-
spectively, as shown in Figure 5. This observation confirms
that for the KASSPER L-band datacube, the LRNAMF can

Fig. 4. Angular and Doppler matched case
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Fig. 5. Angular and Doppler matched case when
KNPAMF = 352

provide better detection performance with less computational
complexity than NAMF and NPAMF. The target cancella-
tion effect (as indicated by the symbol “← yes” that points
to the peak of the solid curve in Figure 5) is also illustrated
for all three algorithms, where it shows that at three “true”
target range bins, those Λ values of the solid curve (com-
puted for the outlier-contaminated case) are always less than
those of the dashed curve (computed for the outlier-free
case).

At the desired range bin, RB = 493, filter outputs for
NAMF, NPAMF, and LRNAMF versus DBP and AZ are
plotted in Figures 6 to 9 to demonstrate the angular and
Doppler mismatched and matched cases. It is shown in
Figures 6 and 8 that the target cannot be detected when
there is a slight mismatch between DBPL (and/or AZL)
and DBPT (and/or AZT ). Only when there is a perfect
match between both values of DBPL and AZL) with that
of DBPT and AZT ), a sharp detection peak in the filter
outputs can then be observed at correct DBPT and AZT

for the desired target as shown in Figures 7 and 9. Also,
the target cancellation effect can be observed (as indicated
by the symbol “← yes” that points to the peak of the solid
curve) in these two Figures 7 and 9.

For target detection, various threshold settings are ap-
plied to the test statistics in order to determine the detection
performance of the NAMF, NPAMF, and LRNAMF. In Fig-
ures 10 to 12, we present three threshold settings used by
these three algorithms to detect targets under the condition
that the training data are free of outliers. The “true” loca-
tions for three inserted targets are specified by the “x” sym-
bols while the detected locations by the “o” symbols. It is
shown that when the training data are free of outliers and
when the threshold setting is optimal, all three algorithms
can correctly detect the “true” locations of these three tar-
gets provided that the target SNR is greater than -30dB,
which is also implied in Figure 1. On the contrary, if the
training data are contaminated with outliers and if the sam-
ple support is small, e.g., KNPAMF = 16), there is no
suitable threshold for the NPAMF to detect all three targets

Fig. 6. Angular mismatched case at RB = 493 when
AZL = 147o

Fig. 7. Angular matched case at RB = 493

simultaneously. This is shown in Figure 13, where even
a very low threshold at -20dB is chosen, the NPAMF can
only detect two targets but yields many false alarms at the
same time. It turns out that when KNPAMF is increased to
352, then the NPAMF has the equivalent detection perfor-
mance as NAMF and LRNAMF with KNAMF = 704 and
KLRNAMF = 84, respectively. This is illustrated in Fig-
ure 14 with a maximum threshold for optimal detection at
KNPAMF = 352.

Case 2: Steering Vector Uncertainty

The disturbance covariance matrices, R̂d, for all CUTs
and the test statistics, ΛNAMF , ΛNP AMF , and ΛLNRAMF ,

Fig. 8. Doppler mismatched case at RB = 493 and
DBPL = −0.2402
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Fig. 9. Doppler matched case at RB = 493

Fig. 10. Target detection with low thresholds for outlier-free
training data

Fig. 11. Optimal target detection with maximum thresholds
for outlier-free training data

Fig. 12. Target detection with high thresholds for outlier-
free training data

Fig. 13. Target detection with Low thresholds for outlier-
contaminated training data

Fig. 14. Optimal target detection with maximum thresholds
for outlier-contaminated training data at KNPAMF = 352

are computed also for two situations: (1) training data are
outlier-free and (2) training data are contaminated with out-
liers. Since there is an uncertainty in the spatio-temporal
steering vector of the desired target, during the computa-
tion of the test statistics, these targets are manually inserted
into the primary data, x, at correct RB = 493, 500, and
507 but without specifying the condition that DBPL =
DBPT = −0.2323 and AZL = AZT = 149o. In this
case, the simulation can’t guarantee that the target steering
vector will only match with one of the “look” steering vec-
tors. The test statistics are shown in Figures 15 to 18. In
Figures 15 and 16, we show that when the training data are
outlier-free, targets at RB = 493, 500, and 507 can be de-
tected with incorrect “look” steering vector if either AZL

or DBPL is slightly different than AZT or DBPT . In fact,
within the range that −0.2638 < DBPL < −0.2008 and
135o < AZL < 161o, those three targets can be detected
even though DBPL and AZL are different from DBPT and
AZT . In addition, with the outlier-free training data, the
target detection performance for this case is the same as the
case with known steering vector as shown in Figures 10 to
12. At the desired range bin, RB = 493, Figures 19 to
22 illustrate that if the training data are free of outliers and
if there is a slight mismatch between DBPL (and/or AZL)
and DBPT (and/or AZT ), there is a substantial broadening
of detection peak at DBPL = −0.2323 or at AZL = 149o.
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Fig. 15. Angular mismatched case when AZL = 147o

Fig. 16. Doppler mismatched case when DBPL =
−0.2402

This broadening causes false alarms as if a target were de-
tected by the incorrect “look” steering vector as shown in
dashed curves of Figures 19 and 21. On the contrary, if
the training data is contaminated by outliers having identi-
cal steering vector and if there is a slight mismatch between
the “look” steering vector and the target, there is no detec-
tion as shown in solid curves of Figures 19 and 21. Only
when there is a perfect match between the “look” steering
vector and the target, there is a sharp detection peak in the
filter output at the correct DBPL = DBPT = −0.2323
and AZL = AZT = 149o as shown in Figures 20 and 22.
Moreover, in Figures 20 and 22, the target cancellation ef-
fect can be observed (as indicated by the symbol “← yes”
that points to the detection peak on the solid curve).

Fig. 17. Angular and Doppler matched case

Fig. 18. Angular and Doppler matched case when
KNPAMF = 352

Fig. 19. Angular mismatched case at RB = 493 and
AZL = 147o

Fig. 20. Angular matched case at RB = 493

Fig. 21. Doppler mismatched case at RB = 493 and
DBPL = −0.2402
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Fig. 22. Doppler matched case at RB = 493

4. SUMMARY

In this paper, we showed that when the signal-to-noise ra-
tio (SNR) is used as a target-detection parameter, the LR-
NAMF can outperform NAMF and NPAMF if the sample
support K for all three algorithms are within the RMB rule,
i.e., K ≤ 2JN. In other words, the LRNAMF requires less
sample support and can detect targets with smaller SNR
than NAMF and NPAMF. Second, we have demonstrated
that when the training data are contaminated with outliers,
the target cancellation effect is revealed in diminished fil-
ter outputs for all three algorithms. In the known steering
vector case, if the training data are free of outliers, there
is a wider range of threshold settings for these three algo-
rithms to choose in order to detect targets without causing
false alarms. Finally, we present a realistic and problem-
atic scenario for target detection in heterogenous radar clut-
ter environment. Namely, when there is uncertainty in the
spatio-temporal steering vector, the detection peak in the fil-
ter output is substantially broadened for all three algorithms.
The broadening in the filter output introduces false alarms
attributed to the ambiguity of determining correct DBPT

and AZT for each individual target.
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